Методика математического развития (экзамен)



страница1/18
Дата21.05.2016
Размер4.16 Mb.
  1   2   3   4   5   6   7   8   9   ...   18





Методика математического развития (экзамен)

1. Основные математические понятия: множество, число, цифра, натуральный ряд чисел, система счисления, счетная, вычислительная, измерительная деятельность, величина, форма, геометрическая фигура, время, пространство.
Методика ФЭМП в системе пед.наук призвана оказать помощь в подготовке детей дошкольного возраста к восприятию и усвоению математики – одного из важнейших предметов в школе и всестороннего развития ребёнка.
Методика ФЭМП имеет специфическую, чисто математическую терминологию.
Это:

- множество;

- число;

- счётная и вычислительная деятельность;

- величина;

- геометрические фигуры;

- время;

- пространство.


МНОЖЕСТВО — это совокупность объектов, которые рассматриваются как единое целое. Мир, в котором живет человек, представлен разнообразными множествами: мно­жество звезд на небе, растений, животных вокруг него, множество разных звуков, частей собственного тела.

Множества состоят из элементов. Элемен­тами множества называют объекты, составляющие множе­ства. Это могут быть реальные предметы (вещи, игрушки, рисунки), а также звуки, движения, числа и др.

Элементами множества могут быть не только отдельные объекты, но и их совокупности. Например, при счете пара­ми, тройками, десятками. В этих случаях элементами множе­ства выступает не один предмет, а два, три, десять - сово­купность.
Таким образом, множества рассматривают как набор, совокупность, собрание каких-либо предметов и объектов, объединённых общим, для всех характерным свойством.
Всякое свойство можно рассматривать как принадлежность некоторым предметам.

Например, свойством быть красным обладают некоторые цветы, ягоды, автомашины и другие предметы. Свойством быть круглым обладают луна, мяч, колеса велосипедов и автомашин, детали различных машин и станков и др.

Таким образом, с каждым свойством связывается множество (предметов), обладающих этим свойством. Говорят также, что множество характеризуется данным свойством — или множество задано указанием характеристического свойства.
Под характеристическим свойством множества подразумеваются такое свойство, которы­м обладают все объекты, принадлежащие данному множеству (элементы этого множества), и не обладает ни один предмет, который не при­надлежит ему, т.е. этот предмет не является его элементом.
Если некоторое множество А задано указанием характеристиче­ского свойства Р, то это записывается следующим образом:
А = {х | Р(х)}
и читается так: «А – множество всех х таких, что х обладает свой­ством Р», или, короче, «А – множество всех х, обладающих свой­ством Р». Когда говорят: «множество всех предметов, обладающих свойством Р», имеются в виду те и только те предметы, которые обладают этим свойством.

Таким образом, если множество А задано характеристическим свойством Р, то это означает, что оно состоит из всех предметов, обладающих этим свойством, и только из них. Если какой-нибудь а обладает свойством Р, то он принадлежит множеству А, и, наоборот, если предмет а принадлежит множеству А, то он обладает свойством Р.


Некоторым свойством может обладать бесконечное множество предметов, другим — лишь конечное множество. Поэтому множества подразделяются на конечные и бесконечные.
Конечное множество может быть задано непосредственным перечислением всех его элементов в произвольном порядке. Например, множество детей данной группы, живущих на Садовой улице, может быть задано описанием с помощью характеристического свойства: {х | х - живет на Садовой улице) или перечислением всех его элементов в произвольном порядке: {Лена, Саша, Витя, Ира, Коля}.
Вполне понятно, что бесконечное множество нельзя задать перечислением всех его элементов.

Математика в большей мере имеет дело с бесконечными множествами (числа, точки, фигуры и другие объекты), но основные математические идеи и логические структуры могут быть смоделированы на конечных множествах.

Естественно, что в предматематической подготовке обычно имеют дело с конечными множествами.
СЧЕТ - первая и основная математическая деятельность, основанная на поэлементном сравнении конечных множеств.

ЧИСЛО – это общая неизменная категория множества, которая является показателем мощности множества. Это лишь звуковое обозначение.
Теоретические основы формирования элементарных математических представлений у дошкольников включают детальное изучение лишь системы натуральных чисел. Поэтому, говоря «числа», мы имеем в виду натуральные числа.
ЦИФРЫсистема знаков (“буквы”) для записи чисел (“слов”) (числовые знаки). Слово “цифра” без уточнения обычно означает один из следующих десяти знаков: 0 1 2 3 4 5 6 7 8 9 (т.н. “арабские цифры”). Сочетания этих цифр порождают дву-(и более) значные числа.
Число имеет 2 значения: количественное и порядковое.
При количественном значении нас интересует количество элементов во множестве. Мы используем вопрос СКОЛЬКО? и счёт начинаем с количественного числительного ОДИН.
При порядковом значении числа нас интересует место числа среди других или порядковый номер элемента во множестве. Используется вопрос КОТОРЫЙ ПО СЧЁТУ? и задаётся направление счёту. Используются порядковые числительные, счёт начинается со слова ПЕРВЫЙ.
Когда мы говорим о количестве, не имеет значения направление счёта, предмет, с которого начали счёт. Итоговое число не меняется. При порядковом счёте – итоговое число может меняться.
СЧЁТНАЯ ДЕЯТЕЛЬНОСТЬ рассматривается как деятельность с конкретными элементами множества, при которых устанавливается взаимосвязь между предметами и числительными. Изучение числительных и множеств предметов ведёт к усвоению счётной деятельности.
ВЫЧИСЛИТЕЛЬНАЯ ДЕЯТЕЛЬНОСТЬ – это деятельность с абстрактными числами, осуществляемая посредством сложения и вычитания. Простое называние числительных не будет называться счётной деятельностью. Система вычислительных действий формируется на основе количественных знаний.
ВЕЛИЧИНА – это качество и свойство предмета, с помощью которого мы сравниваем предметы друг с другом и устанавливаем количественную характеристику сравниваемых предметов.

Понятие величина в математике рассматривается как ос­новное.


Прямого ответа на вопрос “что такое величина?” нет, так как общее понятие величины является непосредственным обобщением более конкретных понятий: длины, площади, объёма, массы, скорости и т.д.
Величина предмета — это его относительная характерис­тика, подчеркивающая протяженность отдельных частей и определяющая его место среди однородных. Величина явля­ется свойством предмета, воспринимаемым различными ана­лизаторами: зрительным, тактильным и двигательным. При этом чаше всего величина предмета воспринимается одно­временно несколькими анализаторами: зрительно-двигатель­ным, тактильно-двигательным и т.д.
Величина предмета, т.е. размер предмета, определяется только на основе сравнения. Нельзя сказать, большой это или маленький предмет, его только можно сравнить с дру­гим.

Восприятие величины зависит от расстояния, с которо­го предмет воспринимается, а также от величины предмета, с которым он сравнивается. Чем дальше предмет от того, кто его воспринимает, тем он кажется меньшим, и наоборот, чем ближе - тем кажется большим.

Характеристика величины предмета зависит также от рас­положения его в пространстве. Один и тот же предмет может характеризоваться то как высокий (низкий), то как длинный (короткий). Это зависит от того, в горизонтальном или вер­тикальном положении он находится. Так, например на рисунке предметы расположены в вертикальном положении и харак­теризуются как высокий и низкий, а на другом рисунке (в горизонтальном положении) эти же самые предметы характеризуются как длинный и короткий.



Величина предмета всегда относительна, она зависит от того, с каким предметом он сравнивается. Сравнивая пред­мет с меньшим, мы характеризуем его как больший, а срав­нивая этот же самый предмет с большим, называем его мень­шим.

Итак, величина конкретного предмета характеризуется такими особенностями: сравнимость, изменчивость и отно­сительность.

1) сравнимость, осуществляемая:

- наложением,

- приложением,

- измерением с помощью условной мерки,

- сравнением на глаз.

2) относительность – зависит от предмета, с которым мы сравниваем, от расстояния, на которое мы сравниваем, от расположения в пространстве.

3) изменчивость. Величина тесно связана с размером. А размер является свойством изменчивости величины. Каждый предмет имеет своё родовое предназначение. Он может изменять свои размеры, не меняя своей сущности.
ГЕОМЕТРИЧЕСКАЯ ФИГУРА – абстрактное понятие, с помощью которого мы все окружающие нас предметы олицетворяем в форме.

Геометрическая фигура – это наличие точек на плоскости, ограниченное пространством.


Фигуры бывают плоские (круг, квадрат, треугольник, многоугольник…) и пространственные (шар, куб, параллелепипед, конус...), которые ещё называют геометрическими телами.
ГЕОМЕТРИЧЕСКОЕ ТЕЛО – это замкнутая часть пространства, ограниченная плоскими и кривыми поверхностями.
Если поверхность, ограничивающая тело, состоит их плоскостей, то тело называют многогранником. Эти плоскости пересекаются по прямым, которые называются рёбрами, и образуют грани тела. Каждая из граней есть многоугольник, стороны которого являются рёбрами многогранника; вершины этого многоугольника называются вершинами многогранника.
Некоторые многогранники с определённым числом граней имеют особые названия: четырёхгранник – тетраэдр, шестигранник – эксаэдр, восьмигранник – октаэдр, двенадцатигранник – додекаэдр, двадцатигранник – икосаэдр.
Что же такое геометрическая ФОРМА?

ФОРМА – это очертание, наружный вид предмета.

Форма (лат. forma - форма, внешний вид) – взаимное расположение границ (контуров) предмета, объекта, а так же взаимное расположение точек линии.
ВРЕМЯ – это философское понятие, которое характеризуется сменой событий и явлений и длительностью их бытия.
Время имеет свойства:

- текучесть (время не остановить)

- необратимость и неповторимость

- длительность.


ПРОСТРАНСТВО - это такое качество, с помощью которого устанавливаются отношения типа окрестностей и расстояния.

Ориентировка в пространстве предполагает ориентировку на себе, от себя, от других объектов, ориентировку на плоскости и ориентировку на местности.

2. Предмет и задачи курса "Методика математического развития и обучения математики". Связь методики математического развития с другими науками.
Методика формирования элементарных математических представлений в системе педагогических наук призвана оказать помощь в подготовке детей дошкольного возраста к восприятию и усвоению математики — одного из важнейших учебных предметов в школе, способствовать воспитанию всесторонне развитой личности.
Выделившись из дошкольной педагогики, методика формирования элементарных математических представлений стала самостоятельной научной и учебной областью.
Предметом ее исследования является изучение основных закономерностей процесса формирования элементарных математических представлений у дошкольников в условиях общественного воспитания.
Круг задач, решаемых методикой, достаточно обширен:

- научное обоснование программных требований к уровню развития количественных, пространственных, временных и других математических представлений детей в каждой возрастной группе;

- определение содержания фактического материала для подготовки ребенка в детском саду к усвоению математики в школе;

- совершенствование материала по формированию математических представлений в программе детского сада;

- разработка и внедрение в практику эффективных дидактических средств, методов и разнообразных форм организации процесса развития элементарных математических представлений;

- реализация преемственности в формировании основных математических представлений в детском саду и соответствующих понятий в школе;

- разработка содержания подготовки высококвалифицированных кадров, способных осуществлять педагогическую и методическую работу по формированию и развитию математических представлений у детей во всех звеньях системы дошкольного воспитания;

- разработка на научной основе методических рекомендаций родителям по развитию математических представлений у детей в условиях семьи.


Общая задача методики — исследование и разработка практических основ процесса формирования элементарных математических представлений у детей дошкольного возраста. Она решается с позиций марксистско-ленинской теории, которая, выработает единый взгляд на мир, открыв законы развития природы, общество, личности, служит методологической, мировоззренческой основой собой науки.
Формирование элементарных математических представлений — это целенаправленный и организованный процесс передачи и усвоения знаний, приемов и способов умственной деятельности, предусмотренных программными требованиями Основная его цель — не только подготовка к успешному овладению математикой в школе, но и всестороннее развитие детей.
Методика формирования элементарных математических представлений у детей в детском саду связана со многими науками, и прежде всего с теми, предметом изучения которых являются разные стороны личности и деятельности ребенка-дошкольника, процесс но воспитания и обучения.

Наиболее тесная связь существует у нее с дошкольной педагогикой. Методика формирования элементарных математических представлений опирается на разрабатываемые дошкольной педагогикой и дидактикой задачи обучения и умственного воспитания подрастающего поколения: принципы, условия, пути, содержание, средства, методы, формы организации и т. д. Связь эта по своему характеру взаимная: исследование и разработка проблем формирования элементарных математических представлений у детей в свою очередь совершенствовать педагогическую теорию, обогащая ее новым фактическим материалом.
Многосторонние контакты существуют между частными методиками, изучающими конкретные закономерности процесса воспитания и обучения маленьких детей: методикой формирования элементарных математических представлений, развития речи, теорией и методикой физического воспитания и др.
Подготовка детей к усвоению математики в школе не может осуществляться успешно без связи с методикой начального обучения математике и теми аспектами самой математики, которые являются теоретической основой обучения дошкольников и младших школьников.

Опора на эти науки позволяет, во-первых, определить объем и содержание знаний, которые должны быть освоены детьми в детском саду, и служить фундаментом математического образования; во-вторых, использовать методы и средства обучения, в полной мере отвечающие возрастным особенностям дошкольников, требованиям принципа преемственности.

Обучение должно строиться с учетом закономерностей развития познавательной деятельности, личности ребенка, что является предметом изучения психологических наук. Восприятие, представление, мышление, речь не только функционируют, но и интенсивно развиваются в процессе обучения.

Психологические особенности и закономерности восприятия ребенком множества предметов, числа, пространства, времени служат основой при разработке методики формирования элементарных математических представлений. Психология определяет возрастные возможности детей в усвоении знаний и навыков, которые не являются чем-то застывшим и меняются в зависимости от типа обучения.


Рациональное построение процесса обучения связано с созданием оптимальных условий на основе анатомо-физиологических особенностей маленьких детей. Закономерности протекания физиологических процессов у дошкольников служат основой для определения длительности занятий по формированию элементарных математических представлений для каждой возрастной группы детского сада, обусловливают саму их структуру, сочетание и чередование различных методов и средств обучения, разных по характеру видов деятельности (включение физкультминуток, дозирование учебно-познавательных задач и т. д.).
Связь с различными науками создает теоретическую базу методики формирования математических представлений у детей в детском саду.

3. Этапы развития методики математического развития: эмпирический, классический, современный.
Вопросы математического развития детей дошкольного возраста своими корнями уходят в классическую и народ­ную педагогику. Различные считалки, пословицы, поговор­ки, загадки, потешки были хорошим материалом в обуче­нии детей счету, позволяли сформировать у ребенка поня­тия о числах, форме, величине, пространстве.

В ходе их освоения дети не только овладевали пересчетом предметов, но и умением воспринимать и осознавать изменения, происходящие в окружающей их действительности: природные, цветовые, пространственные и временные; количественные, изменения по форме, размеру, расположению, пропорциям. Это обеспечивало естественное развитие у детей некоторых представлений, смекалки и сообразительности.


Первая печатная учебная книжка И.Федорова «Букварь» (1574 г.) включала мысли о необходимости обучения детей счету в процессе различных упражнений.
В XIII—XIX вв. вопросы содержа­ния и методов обучения математике детей дошкольного воз­раста и формирования у них представлений о размере, измерении, о времени и пространстве можно найти в педагогических тру­дах Я.А. Коменского, М.Г. Песталоцци, К.Д. Ушинского, Л.Н. Толстого и других.
Взгляды педагогов XIII—XIX вв. на содержание и методы развития у детей математических представлений - это первый этап развития методики — эмпирический.
Педагоги той эпохи под влиянием требований развивающейся практики пришли к выводу о необходимости подготовки детей к усвоению математики в школе. Ими высказывались определенные предложения о содержании и методах обучения детей, в основном в условиях семьи. Надо сказать, что специальных пособий по подготовке детей к школе они не разрабатывали, а основные свои идеи включали в книги по воспитанию и обучению.

Так, Чешский мыслитель-гуманист и педагог Я.А. Коменский (1592—1670) в книге «Материнская школа» (1632) рекомендует еще до школы обучать ребенка счету в пределах двадцати, умению различать числа больше-мень­шие, четные-нечетные, сравнивать предметы по величине, узнавать и называть некоторые геометрические фигуры, пользоваться в практической деятельности единицами изме­рения: дюйм, пядь, шаг, фунт и др.

И. Г. Песталоцци (1746—1827), швейцарский педагог-демократ, указывал на недостатки существующих в то время методов обучения, в основе которых лежит зубрежка, и рекомендовал учить детей счету конкретных предметов, пониманию действий над числами, умению определять время. Предложенные им методы обучения предпо переход от простых элементов к более сложным, широкое использование наглядности, облегчающей усвоение детьми чисел. Идеи И. Г. Песталоцци послужили в дальнейшем (середина XIX в.) основой реформы в области обучения математике в школе.
Передовые идеи в обучении детей арифметике до школы высказывал русский педагог-демократ, основоположник научной педагогики в России К. Д. Ушинский (1824—1871). Он считал важным научить ребенка считать отдельные предметы и их группы, выполнять действия сложения и вычитания, формировать понятие о десятке как единице счета. Однако все это было лишь пожеланиями, не имеющими никакого научного обо­снования.
Писатель и педагог Л. Н. Толстой издал в 1872 году «Азбуку», одна из частей которой называлась «Счет». Критикуя существующие методы обучения, Л.Н. Толстой предлагал учить детей счету «вперед» и «назад» в пределах сотни и нумерации, основываясь при этом на детском практическом опыте, приобретенном в игре.

Методы развития у детей представлений о числе и форме нашли свое отражение и дальнейшее развитие в системах сенсорного воспитания немецкого педагога Ф. Фребеля (1782—1852), итальянского педагога Марии Монтессори (1870—1952) и др.


В классических системах сенсорного обучения Ф. Фребеля (1782-1852) и М. Монтессори (1870—1952) представлена методика ознакомления детей с геометрическими фигура­ми, величинами, измерением и счетом, составлением рядов предметов по размеру, весу и т. д.
Ф. Фребель видел задачи обучения счету в усвоении детьми дошкольного возраста ряда чисел. Им созданы знаменитые «Дары» — специальное пособие для развития конструктивных навыков в единстве с познанием чисел, форм, размеров, пространственных отношений. Ф. Фребель был убежден в том, что развитие в дошкольном возрасте «пространственного» воображения и мышления создает условия для перехода к усвоению геометрии в школе. Созданные Ф. Фребелем «дары» и в настоящее время используются в качестве дидак­тического материала для ознакомления детей с числом, фор­мой, величиной и пространственными отношениями.
М. Монтессори, опираясь на идеи саморазвития и самообучения, признавала необходимым создание специальной среды для освоения чисел, форм, величин, а также письменной и устной нумерации. Она предлагала использовать для этого специальный материал: счетные ящики, связки цветных бус, нанизанных десятками, счеты, монеты и многое другое.

Наиболее результативно педагогическая деятельность М. Монтессори протекала в первой половине XX в. Использование в обучении и воспитании ребенка материалов по развитию у детей математических представлении строилось на определенном стиле взаимодействия взрослого с ребенком; необходимости наблюдения за поведением детей в условии специально созданной среды; организации совместной с ребенком свободной работы и др. Система М. Монтессори предусматривает развитие у ребенка сенсомоторной сферы и в дальнейшем — интеллекта. Особо выделяемый по своей значимости «золотой» математический материал сначала осваивается ребенком как набор бус в разной количественности, затем — в символах (цифрах), после этого — как средство освоения умений сравнивать числа. Таким образом, десятичная система счисления представляется ребенку зримо и осязаемо, что ведет к успешному овладению арифметикой.


Обширно представлен в системе М. Монтессори раздел «Логика и счет»: изучение фигур, размеров, способов измерения, проекции, моделирования множеств. Наиболее интересны следующие пособия: «Фигуры из гвоздиков», «Математическое солнце», «Сложи узор», «Объедини множества».
В целом обучение математике по системе М. Монтессори начиналось с сенсорного впечатления, затем осуществлялся переход к пониманию символа (т. е. от конкретного — к абстрактному), что делало математику привлекательной и доступной даже для 3—4-летних детей.
Итак, передовые педагоги прошлого, русские и зарубежные, признавали роль и необходимость первичных математических знаний в развитии и воспитании детей до школы, выделяли при этом счет в качестве средства умственного развития и настоятельно рекомендовали обучать детей ему как можно раньше, примерно с трех лет. Обучение понималось ими как «упражняемость» в выполнении практических, игровых действий с применением наглядного материала, использование накопленного детьми опыта в различении чисел, времени, пространства, мер в разнообразных детских деятельностях.

Особое значение вопросы методики математического раз­вития приобретают в педагогической литературе начальной школы на рубеже XIX-XX ст. Авторами методических реко­мендаций тогда были передовые учителя и методисты. Опыт практических работников не всегда был научно обоснованным, зато был проверен на практике. Со временем он усовер­шенствовался, сильнее и полнее в нем выявилась прогрессив­ная педагогическая мысль.
В конце XIX - в начале XX столе­тия у методистов возникла потребность в разработке научного фундамента методики арифметики. Значительный вклад в раз­работку методики сделали передовые русские учителя и мето­дисты П.С. Гурьев, А.И. Гольденберг, Д.Ф. Егоров, В.А. Евтушевский, Д.Д. Галанин и другие.
Каталог: attachments -> article -> 448
article -> Профилактика наркозависимости подростков, находящихся в трудной жизненной ситуации План
article -> Профессиональная ориентация школьников
article -> Тема Предмет, задачи и методы психологии
448 -> Лекция Система работы по развитию речи в детском саду Задачи развития речи детей дошкольного возраста
448 -> Преподаватель: Бахорина О. С. Сокол 2013 г. Тема. Сюжетно-ролевая игра, ее особенности и значение в развитии детей дошкольного возраста
448 -> Правила планирования игры в последовательном ее развитии, составление сценария игры
448 -> Введение в педагогическую профессию
448 -> 8 Михалков С. В. Краткие биографические сведения. Тематическое и жанровое многообразие, стихи о животных. Басни. Педагогическая ценность. Создание образа советского человека в тетралогии "Дядя Стёпа". Отражение внутреннего мира ребёнка в лирических


Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7   8   9   ...   18


База данных защищена авторским правом ©dogmon.org 2017
обратиться к администрации

    Главная страница