Теоретические основы формирования количественных представлений детей старшего дошкольного возраста 5


Глава 1. Теоретические основы формирования количественных представлений детей старшего дошкольного возраста



Скачать 208.75 Kb.
страница4/10
Дата06.02.2020
Размер208.75 Kb.
ТипРеферат
1   2   3   4   5   6   7   8   9   10

Глава 1. Теоретические основы формирования количественных представлений детей старшего дошкольного возраста




1.1 Математического образования детей дошкольного возраста в условиях ФГОС


Развитие количественных представлений подразумевает и специфическую математическую терминологию, куда обязательно входят центральные определения: множество, число, цифра, натуральный ряд чисел, система счисления, счетная, вычислительная, измерительная деятельность, величина, форма, геометрическая фигура, время, пространство.

Л.В. Воронина полагал, что развертывание математических представлений у дошкольников находится на предматематическом уровне, но итогом процесса подготовки на этом уровне является общее умственное развитие, эволюция базовых специфических познавательных и умственных умений, важным для дальнейшего усвоения математического содержания [9].

Любое математическое понятие складывается и структурируется поэтапно, по линейно-концентрическому принципу. Разные математические определения тесно объединены между собой. В дошкольном возрасте базовые математические определения вводятся описательно. Каждое понятие усвоено наглядно, через визуальное и практическое восприятие конкретных объектов. В период дошкольного детства уже сложилась обширная область «предпонятийных», «житейских» определений. Содержание «житейских» понятий очень диффузно, их важность в том, что они сложились за счет обобщения признаков объектов, существенных с точки зрения нужд человека, выполнения им различных видов практической деятельности [19].

По мнению В.В. Даниловой, «представление всегда несет в себе свойства абстрактности в силу своей природы, нематериальности» [16].



Рис. 1. Виды математических представлений [2].


А.В. Белошистая считает, что для операций с математическими представлениями нужны их важные компоненты:

а) усвоение системы знаний о математическом представлении;

б) овладение специальной операционной системой действий;

в) установление системы представлений и их родовидовых отношений внутри этой системы, взаимосвязи их признаков;

г) раскрытие генезиса представлений.

Математические представления развиваются не изолированно друг от друга, а как элементы общей понятийной системы, находящиеся друг с другом в тесной связи [4].

Под математическим развитием дошкольников понимаются качественные изменения в познавательной деятельности ребенка, которые происходят в результате развития математических представлений и связанных с ними логических операций. Математическое развитие - значимый компонент в развитии «картины мира» ребенка [13].

Е.И. Щербакова среди задач по развитию математических знаний и последующего математического развития детей выделяет главные, а именно:

— приобретение знаний о множестве, числе, величине, форме, пространстве и времени как основах математического развития;

— развитие широкой начальной ориентации в количественных, пространственных и временных отношениях окружающей действительности;

— развитие навыков и умений в счете, вычислениях, измерении, моделировании, обще учебных умений;

— овладение математической терминологией;

— развитие познавательных интересов и способностей, логического мышления, общее интеллектуальное развитие ребенка [29].

Усвоение количественных представлений ребенком осуществляется в процессе жизни и разнообразной деятельности. Играя, работая, живя, дети сами черпают необходимые им для развития знания из окружающего мира. Педагог должен лишь создавать условия, пользоваться каждым удобным случаем для совершенствования количественных представлений у детей. Игра рассматривается авторами как метод обучения и средство развития интересов детей, активности, находчивости и сообразительности, приучения их к наблюдательности, развития памяти, разумной критики и осознания своих ошибок. Разработки по конкретным направлениям и практическое руководство деятельностью детского сада в области обучения детей счету оказали значительное влияние как на становление методики как таковой, так и на уровень подготовки детей детского сада к обучению в школе [4; 10].

Г.А. Корнеева наиболее полно рассматривает вопросы обучения малышей арифметике. Она прослеживает процесс развития понятия о числе от младшего возраста до начала школьного обучения. На большом экспериментальном материале изучает соотношение восприятия множеств (групп предметов) и счета на различных этапах овладения числом, дает психологический анализ процесса решения детьми арифметических задач [22].

А.М. Леушина рекомендует до обучения счету сформировать у детей представление о множестве, в дальнейшем изучение состава чисел из единиц и двух меньших чисел, отношений между смежными числами рассматривать как предпосылка усвоения действий сложения и вычитания. Наряду с показом образования чисел путем прибавления к числу единицы авторы раскрывают приемы обучения детей сравнению чисел путем сопоставления двух групп предметов, раскладывая их один под другим. Обучение детей образованию чисел, сравнению их осуществлялось параллельно с усвоением способов решения простых арифметических задач, счета в обратном порядке, счета и отсчета группами, по два, по три [23].

Л.А. Венгер, О. М. Дьяченко предлагают математическое развитие строить таким образом, чтобы оно было направлено на развитие логического мышления, а именно на умение устанавливать простейшие закономерности: порядок чередования фигур по цвету, форме, размеру [8].

Подводя итоги вышесказанному, можно сделать выводы, что под математическим развитием детей дошкольного возраста понимают не только сумму знаний в области числа и счета, пространственно - временной ориентировке, представлений о геометрических формах и величинах, но и математические способности, которые помогают ребенку успешно овладевать математическими категориями.

В дошкольном возрасте закладываются основы знаний, необходимых ребенку в школе. Элементарные математика представляет собой сложную науку, которая может вызвать определенные трудности во время школьного обучения. К тому же далеко не все дети имеют склонности и обладают математическим складом ума, поэтому при подготовке к школе важно познакомить ребенка с основами счета.

1.2 Особенности формирования количественных представлений у детей старшего дошкольного возраста в условиях ФГОС


Овладение счетом играет важную роль в умственном развитии ребенка. Знакомство со счетом и числами, числовыми операциями способствуют развитию компонентов логического мышления: ребенку приходится устанавливать простейшие связи и отношения между числами, сравнивать их, рассуждать и делать выводы. Первоначальное усвоение счетных операций в дошкольном возрасте служит подготовкой к дальнейшему обучению математике в школе и, вместе с тем, оказывает многостороннее влияние на общее развитие детского мышления, способствуя формированию процессов анализа, синтеза, абстракции, обобщения.

Обучение счету способствует развитию речи детей: дети учатся отвечать на вопросы воспитателя, давать полные ответы, пересказывать содержание задач, самостоятельно составлять их, упражняются в правильном употреблении грамматических форм изменения слов.

Занятия счетом воспитывают у детей воображение, сообразительность, самостоятельность, дисциплинируют детей.

К началу обучения в школе, важно чтобы дошкольники имели следующие знания основ математики: умение узнавать и называть числа от 1 до 10 и обратно; числительные от одного до десяти считать до 10 в возрастающем и убывающем порядке; умение составлять числа первого десятка, как единиц, так и из двух меньших чисел; выявлять и называть основные геометрические фигуры (круг, треугольник, четырехугольник); доли, умение разделить предмет на 2-4 равные части; основы измерения: ребенок должен уметь измерять высоту, длину, ширину с помощью палочек или веревочки; сравнивание предметов: больше - меньше, шире - уже, выше - ниже; основы информатики, которые являются факультативными и включают в себя понимание следующих понятий: алгоритмы, вычислительная машина, кодирование информации, программа, управляющая вычислительной машиной, формирование основных логических операций - «не», «и», «или» и др. [22].

Основу основ математики составляет понятие числа. Количество, как, впрочем, практически любое математическое понятие, представляет собой абстрактную категорию. Поэтому часто бывает трудно объяснить ребенку, что такое число, количество.

Уметь считать – значит научиться определять общее количество чего-то. При осуществлении счетной операции дети усваивают основные правила счета: числа называются по порядку; каждое названное числительное соотносится с одним объектом или одной группой, последнее числительное соотносится с одним предметом, но является показателем общего количества объектов счета. А.М. Леушина указывала: «Цель счетной деятельности – найти итоговое число, а средством достижения этой цели является название числительных по порядку и соотнесение их к каждому элементу множества [23].

Следовательно, надо продолжить учить детей различать итог счета от процесса сосчитывания» [13].

Счет широко используется в жизни, в различных видах детской деятельности. Счетом приходится пользоваться, например, в изобразительной деятельности: рисуя животных, необходимо посчитать, сколько ног у лошади, коровы, изображая тележку, - сколько у нее колес и так далее.

Важным в математике является количество, а не качество предметов. Задания, собственно, с числами пока трудны и не совсем понятны ребенку. Ребенка можно научить счету на конкретных предметах. Он понимает, что игрушки, фрукты, разные предметы можно сосчитать. При этом считать предметы можно «между делом». Например, по пути в детский сад, домой можно предложить ребенку подсчитать встречающиеся ему по дороге предметы. В играх дети отсчитывают нужное им количество предметов; во время дежурств, считают посуду, ложки, кисточки [25].

Так же необходимо обучать детей счету во время совместной домашней работы. Например, попросить ребенка убрать определенное количество книг на полку. Точно также можно учить ребенка отличать и сравнивать предметы: попросить его принести большую тарелку для фруктов или тот поднос, который шире.

Овладение счетом и знакомство с числами представляет для ребенка дошкольного возраста сложную умственную задачу и достигается путем длительных упражнений под руководством воспитателя.

В старшей группе детского сада изучение чисел проводится на основе знакомства с первым пятком. Продолжается работа над числами всего десятка. Детей знакомят с образованием и составом чисел в пределах десяти, учат простым случаям сложения и вычитания, составлению и решению простейших задач. [29].

Прежде чем учить детей считать, необходимо практически сформировать у них представление о множестве. Знакомство с образованием чисел и счетом в пределах первого пятка в средней группе создает возможность устанавливать простейшие связи между числами (всякое последующее число образуется из предыдущего путем прибавления единицы). Сравнивая смежные числа, дети определяют, какое число больше, какое меньше, а это в свою очередь подводит детей уже старшей группы к пониманию отношений между числами (каждое последующее число больше предыдущего на единицу, каждое предыдущее число меньше последующего на единицу). Усвоение отношений между смежными числами ведет к пониманию места числа в натуральном ряде. Усвоение состава чисел является предпосылкой к действиям сложения и вычитания. Постепенно соблюдается и в характере счета: от счета на конкретном материале переходят к отвлеченному счету; после счета по единице вводится более совершенный счет - группами.

Представление о числе образуется путем многократных упражнений в счете групп разных предметов (грибы, кубики), одинаковых по численности. При этом внимание ребенка сосредоточивается на общем признаке этих групп - их численности; остальные признаки - форма, величина - как бы исчезают.

Дети считают не только те группы предметов, которые предлагает воспитатель, но и те, которые они отсчитывают сами от большого количества предметов. По предложению воспитателя дети сопоставляют, сравнивают, расчленяют множества на элементы. Из отдельных однородных элементов составляют новое множество.

Подведению детей к отвлеченному счету способствуют такие задания: принести столько чашек, сколько сидит за столом мишек и каждому мишке дать одну чашку; отсчитать столько колечек, сколько флажков показал воспитатель; показать столько палочек, сколько ног у кошки и так далее.

Этому же помогают такие упражнения, как счет на слух (счет ударов, хлопков), при этом развивается способность удерживать в памяти всю группу предметов [27].

Счет по памяти: посмотреть на картинку, на которой нарисовано несколько предметов, посчитать их и после того, как картинка убрана, показать столько же палочек; посмотреть на группу предметов, посчитать их и после того, как воспитатель изменит их количество, сказать, сколько было, сколько стало.

Известно, что дети лучше всего усваивают то, что воспринимают непосредственно путем зрения, осязания, особенно при помощи моторно-двигательной деятельности. Восприятие множества становится отчетливей, когда дети при счете дотрагиваются до предметов, берут их в руки, приносят, передвигают, приставляют, прокатывают. Это помогает более четко выделить каждый предмет. В дальнейшем дети только прикасаются к предметам и, наконец, считаю «глазами».

Важным условием сознательного усвоения счета является активная деятельность ребенка: он должен не только слушать, видеть, что показывает воспитатель или отдельные вызванные им дети, но и сам отсчитывать предметы, составлять, сравнивать множества, увеличивать и уменьшать группу предметов.

В обучении детей счету большую роль играет наглядность: понятие о числе может быть достигнуто лишь на основе ясных, отчетливых представлений. Использование пособий создает у детей интерес к занятиям счета, привлекает их внимание к тому, что показывает воспитатель, облегчает понимание того или иного приема или действия.

Используются разнообразные дидактические игры, которые способствует формированию у ребенка математических представлений. Такие игры учат ребенка понимать некоторые сложные математические понятия, формируют представление о соотношении цифры и числа, количества и цифры, развивают умения ориентироваться в направлениях пространства, делать выводы.

Во всей работе по обучению детей счету, важное значение имеет тщательная подготовка воспитателя к занятиям: необходимо распределить программный материал во времени, тщательно продумать каждое занятие, какие знания и умения предполагается дать детям, какие им показать действия, как дать пояснение, какие вопросы поставить перед ними, как связать новый материал с пройденным, что повторить, как построить занятие, чтобы оно было живым и интересным и захватило бы всех детей.

1.3. Условия формирования количественных представлений в дошкольной образовательной организации


Для обоснования педагогических условий, которые будут способствовать успешному формированию счетной деятельности у детей старшего дошкольного возраста в условиях детского сада, уточним, что означает это понятие.

Понятие «педагогические условия» разными авторами трактуются по-разному. Например, С.А. Козлова под педагогическим условием понимает «внешнее обстоятельство, оказывающее существенное влияние на протекание педагогического процесса, сознательно сконструированного педагогом для достижения результата» [20]. А.В. Запорожцев рассматривает педагогические условия как «один из компонентов педагогической системы, отражающий совокупность внешних и внутренних возможностей образовательной и материально-пространственной среды в достижении образовательных результатов» [27].

Обобщая все вышеприведенные определения, в нашем исследовании под педагогическими условиями будем понимать совокупность содержания, форм, методов, приемов и средств организации счетной деятельности и развивающей предметно-пространственной среды группы детского сада.

Можно выделить 3 вида педагогических условий:

1) организационно-педагогические условия – планирование, методы руководства образовательной деятельностью, направленные на достижение целей и решение задач этой деятельности; организация предметно-пространственной среды и взаимодействие со всеми субъектами образовательных отношений и прежде в сего с родителями воспитанников;

2) психолого-педагогические условия – ряд мер и способов педагогического взаимодействия, учитывающих возрастные психологические особенности детей и обеспечивающих формирование разных видов деятельности и развитие личностных качеств детей в этих видах деятельности;

3) дидактические условия – организационные формы, методы (приемы) и средства, направленные на достижение целей обучения, развития, воспитания детей.

Правильно созданные педагогические условия обеспечивают успешное формирование счетной деятельности у детей дошкольного возраста.

Организационно-педагогические условия формирования счетной деятельности у детей старшего дошкольного возраста:

1) планирование занятий по счетной деятельности в рамках образовательной области «Познавательное развитие», раздел ФЭМП;

2) организацию развивающей предметно-пространственной среды в группе детского сада;

3) взаимодействие с родителями воспитанников [29].

Согласно первому организационно-педагогическому условию, планирование занятий по формированию счетной деятельности в старшей группе проводится воспитателями на весь учебный год, по месяцам и по неделям в соответствии с требованиями ФГОС ДО и образовательной программы дошкольного образования.

Одним из важных требований ФГОС ДО к структуре образовательной программы дошкольного образования является то, что она должна:

– основываться на комплексно-тематическом построении образовательной деятельности;

– предусматривать решение программных образовательных задач в совместной деятельности взрослого и детей и самостоятельной деятельности детей в рамках организованной образовательной деятельности и при проведении режимных моментов в соответствии со спецификой дошкольного образования;

– предполагать построение образовательной деятельности на адекватных возрасту формах работы с детьми. Основной формой работы с детьми дошкольного возраста и ведущим видом деятельности для них является игра» [28].

А.В. Белошастая подчеркивает, что «планирование счетной деятельности детей проводится с учетом комплексно-тематического принципа и включает следующие этапы:

1. Выбирается (планируется) тема и подбираются игры, соответствующие этой теме.

2. В группе организуется развивающая предметно-пространственная среда в соответствии с запланированной темой.

3. Для родителей предлагаются консультации, рекомендации, памятки, брошюры и т.д.» [4].

Таким образом, принцип комплексно-тематического планирования обеспечивает единство воспитательных, обучающих и коррекционно-развивающих целей и задач процесса образования дошкольников.

Проведем анализ методической литературы, в которой есть описание педагогических условий формирования счетной деятельности у дошкольников.

Важным педагогическим условием формирования счетной деятельности у дошкольников, по мнению Л.В. Ворониной, является «применение активных форм и методов педагогической работы, соответствующих возрасту детей (дидактическая игра, эвристические беседы, наглядный показ, экспериментирование, моделирование, проектная деятельность и т.д.). Воспитатели детского сада должны умело варьировать формы и методы обучения» [9].

С педагогической точки зрения важным условием формирования счетной деятельности у дошкольников является использование дидактических игр. По мнению Л.Н. Галкиной, «решения задач, поставленных дидактическими играми математического содержания, требуют сосредоточенного внимания, активной мыслительной деятельности, выполнения различных мыслительных операций (сравнения, обобщения, классификации, сериации)» [13]. Это же условие выделено Л. В. Запорожцем, который писал, что «оптимальные педагогические условия для реализации потенциальных возможностей ребенка дошкольного возраста создаются путем широкого развертывания и максимального обогащения специфики детских форм игровой, практической и изобразительной деятельности, а также общение детей друг с другом и со взрослым» [27]. В старший дошкольный период учение включено в другие виды деятельности – ребенок общается со взрослым – и учится, он манипулирует предметами – и учится, он играет – и учится.

В процессе формирования счетной деятельности у дошкольников важно использовать наглядность, модели и алгоритмы в обучении. По мнению Т.А. Фолькович, «наиболее успешно этот процесс осуществляется в наглядных моделях и логико-математических играх, последовательность действий при этом обозначается стрелкой» [28].

При формировании счетной деятельности у дошкольников важно организовать развивающую предметно-пространственную среду. Е. И. Щербакова рекомендует организовать развивающую предметно-пространственную среду таким образом, чтобы «математический материал давал возможность каждому ребёнку действовать самому, обеспечивал развитие познавательных интересов и математической грамотности дошкольников. Необходимо хорошо оборудовать в детском саду мини-лаборатории, дидактический уголок по обучению детей математике» [29].

Второе организационно-педагогическое условие формирования счетной деятельности у дошкольников – организация развивающей предметно-пространственной среды, которая, по мнению В. П. Новиковой, включает:

– «организацию группе детского сада специального места для формирования счетной деятельности детей – Центра, Уголка;

– наличие наглядных и дидактических пособий;

– наличие раздаточного материала и оборудование для счетной деятельности и дидактических игр математического содержания» [25].

Психолого-педагогические условия формирования счетной деятельности у старших дошкольников выделены Е. И. Щербаковой. Это:

1) «учет уровня сформированности умений счетной деятельности у детей;

2) отбор дидактических игр, соответствующих возрасту и математической подготовке детей старшего дошкольного возраста;

3) дифференцированный подход к формированию счетной

деятельности, при котором работа с детьми проводится в разных формах – коллективной, групповой и индивидуальной» [29].

Первое психолого-педагогическое условие – учет уровня сформированности умений счетной деятельности у детей – реализуется при помощи педагогической диагностики. В ФГОС ДО отмечено, что «результаты педагогической диагностики (мониторинга) могут использоваться исключительно для решения следующих образовательных задач:

1) индивидуализации образования, в том числе поддержки ребенка, построения его образовательной траектории или профессиональной коррекции особенностей его развития, в нашем случае – коррекции у него умений счетной деятельности);

2) оптимизации работы с группой детей [29].

Наблюдения за детьми в процессе счетной деятельности дают педагогу богатый материал для изучения своих воспитанников, помогают найти правильный подход к каждому ребенку.

Исходя из сущности счетной деятельности, выделенных А. В. Белошистой [4], ее формирование у старших дошкольников осуществляется через расширение и формирование следующих знаний и умений:

1) знания натурального ряда чисел (номера числа, порядкового счета и образования чисел как результата счета);

2) знания отношений эквивалентности и порядка (умение сравнивать отвлеченные числа в пределах 10, сравнивать предметные множества с помощью метода установления взаимно однозначного соответствия);

3) знаний состава однозначных чисел;

4) умений пользоваться способами вычислений (сложение, вычитание, деление на равные и неравные части) и решать текстовые арифметические задачи.

Таким образом, нами выделены и охарактеризованы педагогические условия, необходимые для формирования счетной деятельности детей старшего дошкольного возраста. Это организационно-педагогические, психолого-педагогические и дидактические условия, которые реализуются взаимосвязано, в комплексе под руководством педагога в организованной образовательной деятельности, совместной деятельности детей и педагогов и в самостоятельной деятельности детей. Однако в современных программах дошкольного образования и методической литературе нет четкого указания на то, как спроектировать и реализовать эти условия, поэтому педагогам детского сада необходимо самостоятельно разработать и внедрить их в образовательную деятельность детского сада.


Глава 2. Игровые упражнения с палочками Кюизенера как средство формирования количественных представлений детей старшего дошкольного возраста




2.1. Роль игровых упражнений в формировании количественных представлений детей старшего дошкольного возраста


С помощью дидактической игры мы даем детям дошкольного возраста важные для них знания, навыки и умения. Дидактическая игра имеет два смысла, первый несет за собой обучающий, а второй самостоятельный игровой процесс. Любой педагог изо дня в день на любом виде детской деятельности проводя занятия пользуется дидактической игрой, будь это новые знания или закрепление старых уже пройденных. Очень удобно использовать дидактические игры в индивидуальной работе, педагогу. Не нужно затрачивать время на поиски материала, так как дидактические игры идут уже с конкретными программными требованиями. Воспитатель только выбирает, какую игру и в каком виде деятельности провести.

Дидактическая игра уже создает такие условия, при которых дошкольник может самостоятельно принимать решение как действовать в той или иной ситуации, как решить поставленную перед ним задачу, как действовать или играть только с теми предметами или картинками, пройдя через эту игру, дошкольник набирает свой опыт. Ребенку с ограниченными возможностями требуется больше времени для освоения и понимания того или иного действия, или он может делать чаще ошибки, чем обычно развивающийся ребенок. Задача, которая стоит перед педагогом пили воспитателем научить детей находить способ ориентировки и поиска решения при выполнении задания.

Дидактические игры условно можно разделить на три группы:

игры с предметами, такой вид игры очень хорошо применять, потому что через различные манипуляции с предметом ребенок воспринимает реальный объект в окружающей действительности, через эту игру он знакомится с предметом. Предметы можно группировать по свойству, цвету, размеру, и т.д.;

словесно – логические игры даются детям тяжелее, так как нельзя пощупать и посмотреть, вся игра происходит в речевой форме, и дошкольники опираются на представления и воображение;

настольно – печатные игры — это самые удобные игры, посмотрев на картинку, дети могут выполнить те или иные игровые действия, так как у детей работает наглядно образное мышление с помощью, которого они активизируются. При систематическом проведении данных игр у детей развиваются мыслительные функции и психические процессы.

Тогда, когда детям хорошо известны правила и действия игры они начинают проявлять интерес к игровой деятельности, этот процесс происходит у них совершенно осознано. Особенно хорошо их привлекают и затягивают игры которые им уже знакомы.

Через игру происходит и обучение ребенка, так как она является главной и ведущей деятельностью дошкольника. Система дидактической игры состоит из того, что в нем есть замысел, содержание, игровые действия, правила и итог. Но цель дидактической игры все же обучающая, её задача состоит, в том, чтобы, ребенок по итогам получил какие-либо знания.

Цели и задачи, которые несут дидактические игры, несут обучающий характер, с помощью нее мы можем развивать познавательный процесс.

С помощью дидактической игры у детей развиваются психические процессы самостоятельно. Играя в игры, дети учатся и познают, узнают и запоминают новое.

Для детей дошкольного возраста игра это – учеба, труд и серьезная форма воспитания.

В процессе дидактической игре и игровых упражнениях идет обмен опытом между детьми, ребенком и педагогом, и ребёнком, и родителем. При частом проигрывании одной игры каждый день или одинакового вида упражнения с каждым разом ребенок начинает вести себя более уверенно и не принужденно. Только в этом случаи игра будет ценна и будет лучше усвоена.

Таким образом, через дидактические игры проявляется творческая деятельность, а через творческую деятельность постигаются окружающая действительность, и познается мир.

Математическое содержание в старшем и дошкольном возрасте, не кем образом, адресовано на развитие познавательных и творческих способностях детей. Они могут подводить итоги, сопоставлять, обнаружить и установить естественные не случайные соотношения и отношения, находить решение проблемы, выдвигать это решение, предполагать каким будет результат и ход решения творческой задачи. Для этого следует сделать занятие для детей более интересными и содержательными, насыщенными, переходящими в свободную игровую и практическую деятельность вне занятий, основанную на самоконтроле и самооценке.

В данном случае если рассматривать занимательную математику, то можно выделить следующее: математический материал может использовать как рациональную взаимосвязь работы ребенка и взрослого. Для сформированности знаний о математике в основную часть занятий можно включать занимательную математику или поиграть в качестве рефлексии в конце занятия, когда уже мозг ребенка не может концентрировать на чем-то серьезном. Разный математический материал имеет свое направление. Так, головоломки можно применить при закреплении знаний о геометрических фигур, их изменения. Задачи в виде загадок, в данном случае необходимы для формирования умений решать математические задачи, выполнять какие-либо математические действия над числами, иметь представление о времени. Для детей подготовительной группы занимательные задачи предлагаются как гимнастика развивающая ум.

Особую популярность сейчас составляют такие пособия как лэпбук. Он основан на том, что ребенок с помощью воспитателя знакомится с материалом, а за тем уже и сам самостоятельно играет или занимается с представленным материалом.

Игры и пособия разработанные и представленные в помощь детям могут использоваться и самостоятельно, особенно в старшем дошкольном возрасте.

Работая с такими пособиями у ребенка активизируется мыслительная деятельность, что пригодится ему в дальнейшем, став уже взрослым и самостоятельным человеком. Научиться планировать свои дальнейшие действия дошкольнику помогут задачи на смекалку, головоломки, потому что для нахожде6ния правильного ответа, нужны такие действия как обдумывание, догадывание и проявление творческого подхода.

Дидактические игры можно условно разделить на 3 группы:

игры развлечения;

математические игры и задачи;

развивающие (дидактические) игры и упражнения.

Дидактические игры находят самое большое и распространенное применение, в этих играх можно найти и занимательный математический материал. Требования к дидактическим играм – сформировать знания и привить навык детей различать, выделять главное, большее и меньшее, в назывании количества предметов, называть числа, геометрические фигуры и т.п. Развивать и формировать новые знания можно при помощи дидактических игр, и формировать умение детей действовать разными способами. Перед каждой игрой стоит определенная конкретная задача, которая будет совершенствовать математические представления.

Дидактические игры и математические игры самые распространенные и применяемые игры у молодого и современного специалиста, используемые в дошкольном обучении и воспитании. Дети с удовольствием играют с занимательным материалом, а особенно акцент падает на интерактивные пособия. Всем педагогам известно, о том, что игра у детей является ведущим видом деятельности, с помощью игры можно включать новые знания, расширять кругозор дошкольника, уточнять имеющиеся уже знания и закреплять уже пройденный учебный материал. Интерес детей не пропадает даже в индивидуальной работе и даже просто в игре.

Уроки веселой и занимательной математики помогают привить любовь и интерес математике и логике, сосредотачиваться и рассуждать.

Использование дидактических игр способствуют и формируют знания детей о математике. Через такие игры дошкольники учатся понимать некоторые математические понятия, понятия цифры и числа, количества, ориентировка в пространстве, при решении какой-либо задачи делать выводы.

Самым распространенным материалом в дидактических играх являются различные предметы и наглядный материал, за счет него занятия проходят интересней и веселей, материал легко усваивается.

При возникновении трудностей при счете, нужно показывать материал и проговорить счет вместе с ребенком, желательно это делать вслух. При любой возможности считать разные предметы, спрашивая у ребенка сколько тех или иных предметов ребенок видит.

С помощью навыков устного счета дети учатся понимать некоторые элементарные вещи домашнего обихода, на которых имеются цифры, к таким предметам относятся часы и термометр.

Когда перед дошкольником встает необычная ситуация, в которой выявляется проблема, и детям нужно активизироваться и решить эту не простую и, по их мнению, задачу, для них это очень интересно и занимательно.

Через игровые задачи у дошкольника формируется способность воспринимать познавательные задачи и находить правильные решения.

Математические упражнения и задачи, при которых нужно сосредоточиться, понять и найти пути решения развивают в ребенке внимание, мышление, логику, познавательную деятельность.

Делая вывод, можно, сказать, что, в игровой форме происходит развитие в любой области знаний, у дошкольника формируется умение выполнять различные операции математического характера, с помощью операций можно улучшить и развить психические процессы память. Игра помогает детям усваивать сложные математические понятия, учатся считать, читать и писать. Самое главное - это привить малышу интерес к познанию. Познавательный интерес появляется во время увлекательной и интересной игровой задаче, поэтому педагог ищет увлекательную и интересную игру.

2.2. Методика формирования количественных представлений с помощью игровых упражнений с палочеками Кюизенера у детей старшего дошкольного возраста


Процесс развития представлений о числе и счете будет протекать успешно, если: будет использоваться методика «палочки Кюизенера» (цветные цифры); будет создано дидактическое обеспечение для реализации методики «палочки Кюизенера» (цветные цифры).

Игры с использованием палочек Кюизенера необходимо проводить с постепенным усложнением. На первом этапе необходимо использовать подготовительные игры и упражнения, которые состоят в группировке палочек (полосок) по разным признакам, сооружению из них построек. Дети осваивают состав комплекта палочек (полосок), их цвета, соотношение палочек (полосок) по размеру.

Помимо выражений «такой же», «не такой, как» используются словам «одинаковые», «разные».

В ходе этих игр педагог должен помочь каждому ребенку выделить свойства (признаки), по которым сравнивают полоски: цвет и длину. Для этого предлагает ребенку следующее:

- найди и покажи палочку (полоску) такую же по цвету (по длине);

- отбери все красные (синие, желтые и т.д.) палочки (полоски), палочки (полочки) такой же длины;

- отбери по одной палочке (полоске) разного цвета;

- перечисли цвета всех палочек (полосок) на столе;

- раскрась шарик так, чтобы цвет его и палочки (полоски) был одинаковым (разным) и т.д.

По ходу выполнения ребенком этих заданий несложно выяснить, какие цвета он различает. В случае если возникли затруднения при определении цвета той или иной палочки (полоски) необходимо показать и назвать цвет, затем помочь найти полоску такого же цвета, далее – предметы такого же цвета в окружающей обстановке.

Для развития представлений о количественных отношениях детям на подготовительном этапе предлагается выполнить следующие задания и ответить на вопросы:

- найдите и покажите одну полоску, много полосок, две полоски, столько же полосок;

- полосок стало больше (меньше)? (вопрос задают после того, как добавляют или убирают одну или несколько полосок).

После проведения игр и заданий на подготовительном этапе переходят на основной этап, в который включаются игры и упражнения на развитие представлений о числе.

В каждом игровом упражнении необходимо помочь детям закрепить названия цветов и числовое обозначение палочек (полосок). Дети учатся соотносить цвет и число и наоборот, число и цвет.

Примеры игровых упражнений:





Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   10


База данных защищена авторским правом ©dogmon.org 2019
обратиться к администрации

    Главная страница