Конспект лекций раздел Предмет и методы математической статистики Тема Место и роль статистического анализа в экспериментально-психологическом исследовании и психологической практике



страница7/7
Дата15.05.2016
Размер2.83 Mb.
#12898
ТипКонспект
1   2   3   4   5   6   7

Меры расстояния

Объединение или метод древовидной кластеризации используется при формировании кластеров несходства или расстояния между объектами. Эти расстояния могут определяться в одномерном или многомерном пространстве. Например, если вы должны кластеризовать типы еды в кафе, то можете принять во внимание количество содержащихся в ней калорий, цену, субъективную оценку вкуса и т.д. Наиболее прямой путь вычисления расстояний между объектами в многомерном пространстве состоит в вычислении евклидовых расстояний. Если вы имеете двух- или трёхмерное пространство, то эта мера является реальным геометрическим расстоянием между объектами в пространстве (как будто расстояния между объектами измерены рулеткой). Однако алгоритм объединения не "заботится" о том, являются ли "предоставленные" для этого расстояния настоящими или некоторыми другими производными мерами расстояния, что более значимо для исследователя; и задачей исследователей является подобрать правильный метод для специфических применений.

Евклидово расстояние. Это, по-видимому, наиболее общий тип расстояния. Оно попросту является геометрическим расстоянием в многомерном пространстве и вычисляется следующим образом:

(x,y) = {∑i (xi - yi)2}1/2

Заметим, что евклидово расстояние вычисляется по исходным, а не по стандартизованным данным. Это обычный способ его вычисления, который имеет определенные преимущества (например, расстояние между двумя объектами не изменяется при введении в анализ нового объекта, который может оказаться выбросом). Тем не менее, на расстояния могут сильно влиять различия между осями, по координатам которых вычисляются эти расстояния. К примеру, если одна из осей измерена в сантиметрах, а вы потом переведете ее в миллиметры (умножая значения на 10), то окончательное евклидово расстояние (или квадрат евклидова расстояния), вычисляемое по координатам, сильно изменится, и, как следствие, результаты кластерного анализа могут сильно отличаться от предыдущих.

Квадрат евклидова расстояния. Иногда может возникнуть желание возвести в квадрат стандартное евклидово расстояние, чтобы придать большие веса более отдаленным друг от друга объектам. Это расстояние вычисляется следующим образом:

(x,y) = ∑i (xi - yi)2

Расстояние городских кварталов (манхэттенское расстояние). Это расстояние является просто средним разностей по координатам. В большинстве случаев эта мера расстояния приводит к таким же результатам, как и для обычного расстояния Евклида. Однако отметим, что для этой меры влияние отдельных больших разностей (выбросов) уменьшается (так как они не возводятся в квадрат). Манхэттенское расстояние вычисляется по формуле:

(x,y) = ∑i |xi - yi|

Расстояние Чебышева. Это расстояние может оказаться полезным, когда желают определить два объекта как "различные", если они различаются по какой-либо одной координате (каким-либо одним измерением). Расстояние Чебышева вычисляется по формуле:

(x,y) = Максимум|xi - yi|

Степенное расстояние. Иногда желают прогрессивно увеличить или уменьшить вес, относящийся к размерности, для которой соответствующие объекты сильно отличаются. Это может быть достигнуто с использованием степенного расстояния. Степенное расстояние вычисляется по формуле:

(x,y) = (∑i |xi - yi|p)1/r

где r и p - параметры, определяемые пользователем. Несколько примеров вычислений могут показать, как "работает" эта мера. Параметр p ответственен за постепенное взвешивание разностей по отдельным координатам, параметр r ответственен за прогрессивное взвешивание больших расстояний между объектами. Если оба параметра - r и p, равны двум, то это расстояние совпадает с расстоянием Евклида.

Процент несогласия. Эта мера используется в тех случаях, когда данные являются категориальными. Это расстояние вычисляется по формуле:

(x,y) = (Количество xi yi)/ i



На первом шаге, когда каждый объект представляет собой отдельный кластер, расстояния между этими объектами определяются выбранной мерой. Однако когда связываются вместе несколько объектов, возникает вопрос, как следует определить расстояния между кластерами? Другими словами, необходимо правило объединения или связи для двух кластеров. Здесь имеются различные возможности: например, вы можете связать два кластера вместе, когда любые два объекта в двух кластерах ближе друг к другу, чем соответствующее расстояние связи. Другими словами, вы используете "правило ближайшего соседа" для определения расстояния между кластерами; этот метод называется методом одиночной связи. Это правило строит "волокнистые" кластеры, т.е. кластеры, "сцепленные вместе" только отдельными элементами, случайно оказавшимися ближе остальных друг к другу. Как альтернативу вы можете использовать соседей в кластерах, которые находятся дальше всех остальных пар объектов друг от друга. Этот метод называется метод полной связи. Существует также множество других методов объединения кластеров, подобных тем, что были рассмотрены.

Одиночная связь (метод ближайшего соседа). Как было описано выше, в этом методе расстояние между двумя кластерами определяется расстоянием между двумя наиболее близкими объектами (ближайшими соседями) в различных кластерах. Это правило должно, в известном смысле, нанизывать объекты вместе для формирования кластеров, и результирующие кластеры имеют тенденцию быть представленными длинными "цепочками".

Полная связь (метод наиболее удаленных соседей). В этом методе расстояния между кластерами определяются наибольшим расстоянием между любыми двумя объектами в различных кластерах (т.е. "наиболее удаленными соседями"). Этот метод обычно работает очень хорошо, когда объекты происходят на самом деле из реально различных "рощ". Если же кластеры имеют в некотором роде удлиненную форму или их естественный тип является "цепочечным", то этот метод непригоден.

Невзвешенное попарное среднее. В этом методе расстояние между двумя различными кластерами вычисляется как среднее расстояние между всеми парами объектов в них. Метод эффективен, когда объекты в действительности формируют различные "рощи", однако он работает одинаково хорошо и в случаях протяженных ("цепочного" типа) кластеров.

Взвешенное попарное среднее. Метод идентичен методу невзвешенного попарного среднего, за исключением того, что при вычислениях размер соответствующих кластеров (т.е. число объектов, содержащихся в них) используется в качестве весового коэффициента. Поэтому предлагаемый метод должен быть использован (скорее даже, чем предыдущий), когда предполагаются неравные размеры кластеров.

Невзвешенный центроидный метод. В этом методе расстояние между двумя кластерами определяется как расстояние между их центрами тяжести.

Взвешенный центроидный метод (медиана). Этот метод идентичен предыдущему, за исключением того, что при вычислениях используются веса для учёта разницы между размерами кластеров (т.е. числами объектов в них). Поэтому, если имеются (или подозреваются) значительные отличия в размерах кластеров, этот метод оказывается предпочтительнее предыдущего.

Метод Варда. Этот метод отличается от всех других методов, поскольку он использует методы дисперсионного анализа для оценки расстояний между кластерами. Метод минимизирует сумму квадратов (SS) для любых двух (гипотетических) кластеров, которые могут быть сформированы на каждом шаге. Подробности можно найти в работе Варда (Ward, 1963). В целом метод представляется очень эффективным, однако он стремится создавать кластеры малого размера.

Ранее этот метод обсуждался в терминах "объектов", которые должны быть кластеризованы (см. Объединение (древовидная кластеризация)). Во всех других видах анализа интересующий исследователя вопрос обычно выражается в терминах наблюдений или переменных. Оказывается, что кластеризация, как по наблюдениям, так и по переменным может привести к достаточно интересным результатам. Например, представьте, что медицинский исследователь собирает данные о различных характеристиках (переменные) состояний пациентов (наблюдений), страдающих сердечными заболеваниями. Исследователь может захотеть кластеризовать наблюдения (пациентов) для определения кластеров пациентов со сходными симптомами. В то же самое время исследователь может захотеть кластеризовать переменные для определения кластеров переменных, которые связаны со сходным физическим состоянием.



Двувходовое объединение

После этого обсуждения, относящегося к тому, кластеризовать наблюдения или переменные, можно задать вопрос, а почему бы не проводить кластеризацию в обоих направлениях? Модуль Кластерный анализ содержит эффективную двувходовую процедуру объединения, позволяющую сделать именно это. Однако двувходовое объединение используется (относительно редко) в обстоятельствах, когда ожидается, что и наблюдения и переменные одновременно вносят вклад в обнаружение осмысленных кластеров.



Метод K средних как метод кластеризации существенно отличается от таких агломеративных методов, как Объединение (древовидная кластеризация) и Двувходовое объединение. Предположим, вы уже имеете гипотезы относительно числа кластеров (по наблюдениям или по переменным). Вы можете указать системе образовать ровно три кластера так, чтобы они были настолько различны, насколько это возможно. Это именно тот тип задач, которые решает алгоритм метода K средних. В общем случае метод K средних строит ровно K различных кластеров, расположенных на возможно больших расстояниях друг от друга.

В примере с физическим состоянием медицинский исследователь может иметь "подозрение" из своего клинического опыта, что его пациенты в основном попадают в три различные категории. Далее он может захотеть узнать, может ли его интуиция быть подтверждена численно, то есть, в самом ли деле кластерный анализ K средних даст три кластера пациентов, как ожидалось? Если это так, то средние различных мер физических параметров для каждого кластера будут давать количественный способ представления гипотез исследователя (например, пациенты в кластере 1 имеют высокий параметр 1, меньший параметр 2 и т.д.).



С вычислительной точки зрения вы можете рассматривать этот метод, как дисперсионный анализ (см. Дисперсионный анализ) "наоборот". Программа начинает с K случайно выбранных кластеров, а затем изменяет принадлежность объектов к ним, чтобы: (1) - минимизировать изменчивость внутри кластеров, и (2) - максимизировать изменчивость между кластерами. Данный способ аналогичен методу "дисперсионный анализ (ANOVA) наоборот" в том смысле, что критерий значимости в дисперсионном анализе сравнивает межгрупповую изменчивость с внутригрупповой при проверке гипотезы о том, что средние в группах отличаются друг от друга. В кластеризации методом K средних программа перемещает объекты (т.е. наблюдения) из одних групп (кластеров) в другие для того, чтобы получить наиболее значимый результат при проведении дисперсионного анализа (ANOVA).

Обычно, когда результаты кластерного анализа методом K средних получены, можно рассчитать средние для каждого кластера по каждому измерению, чтобы оценить, насколько кластеры различаются друг от друга. В идеале вы должны получить сильно различающиеся средние для большинства, если не для всех измерений, используемых в анализе. Значения F-статистики, полученные для каждого измерения, являются другим индикатором того, насколько хорошо соответствующее измерение дискриминирует кластеры.
Каталог: 2013
2013 -> 1. Предмет философии и структура философского знани
2013 -> Тесты для диагностики уровня агрессивности у воспитанников, критерии эффективности психолого-педагогической работы; подробно описываются пути и средства достижения положительного результата
2013 -> Внутрибольничное агрессивное поведение психически больных и пути его профилактики. 14. 01. 06 психиатрия
2013 -> Факторы риска патологической агрессии у больных с аффективными расстройствами 14. 01. 06 Психиатрия (мед науки)
2013 -> Пособие по обучению и воспитанию детей-инвалидов с умеренной и выраженной умственной отсталостью в условиях семьи
2013 -> Активность личности, деятельность
2013 -> «ха­рактер» означает «чеканка»,
2013 -> Сведения о цбс


Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7




База данных защищена авторским правом ©dogmon.org 2023
обратиться к администрации

    Главная страница