(б) Почему может быть нецелесообразно оценивать способности на основе критерия, ориентированного на «самое трудное решенное задание» или на «самое легкое нерешенное задание»?
Проблема заключается в том, что очень большое число показателей может быть подсчитано на основе данных, представленных в задании 16.1. Как решить, какой из показателей следует использовать? Один подход может заключаться в применении имеющейся математической модели, описывающей, что может происходить, когда испытуемый отвечает на задания теста. Для простоты мы примем пока допущение, что имеем дело с тестом свободных ответов (тогда угадывание не составляет проблемы), каждое задание которого может быть оценено как правильно или неправильно решенное.
Характеристическая
кривая задания
....
Три допущения, которые можно сделать с достаточной степенью надежности, таковы:
1) вероятность того, что кто-то справится с заданием правильно, зависит как от способностей человека, так и от трудностей тестового задания;
2) вероятность того, что кто-то справится с конкретным заданием правильно, не зависит от правильности его ответов на любые другие задания, а является функцией способностей человека (это известно как допущение «локальной независимости»);
3) все задания шкалы оценивают только один конструкт.
Допущение локальной независимости, в сущности, означает, что каждое задание должно представлять совершенно новую проблему и не должно быть переноса с одного задания на следующее — либо положительного (когда правильный ответ на один вопрос или сам по себе необходим, или дает ключ к ответу на другой), либо отрицательного (когда может быть необходимо отказаться от «приема», использованного в предыдущих вопросах, чтобы прийти к правильному ответу в следующем). Таким образом, допущение локальной независимости не будет распространяться на такие задания, как задание 1: «Сколько будет 4 + 5?» и задание 2: «Чему будет равен корень квадратный из ответа на задание 1?», поскольку, если на задание 1 ответили неправильно, ответ на задание 2 также должен быть ошибочным. Ради простоты давайте рассмотрим одиночное тестовое задание. Допущение (1), приведенное выше, говорит о том, что вероятность того, что кто-то правильно справится с заданием, зависит от его способностей и трудности этого задания. Итак, каков же наилучший способ смоделировать эту связь математически? Вы можете сначала подумать, что прямая линия, связывающая способности и успешность, обеспечит самую простую взаимосвязь. В конце концов, специалисты в области психометрики обычно допускают возможность линейных связей между переменными, когда вычисляют корреляции и т.д. Таким образом, может быть, мы могли бы описать связь между способностями и успешностью решения задания прямой линией? Один такой график представлен на рис. 16.1 (не обращайте пока внимания на буквы А, Си В).
На рис. 16.1 показано, что мы можем оценить вероятность того, что кто-то выполнит задание, используя уравнение прямой, т.е.
вероятность решения задания = а + b x способности, где а и b — константы (числа), которые могут быть установлены, например, с помощью регрессии. К сожалению, этот график, по-видимому, является в значительной степени ошибочным. Во-первых, мы знаем, что вероятность правильного решения задания
Рис. 16.1. Возможная линейная связь между способностями и успешностью выполнения задания.
может колебаться только между 1 и 0. В отличие от тех случаев, когда линия не горизонтальна (что само указывает на то, что вероятность решения заданий совершенно не связана со способностями), прямая линия обязывает предположить, что у студентов с очень низким или с очень высоким уровнем способностей вероятность решения задачи будет либо меньше нуля, либо больше единицы, и это явно абсурдно. Здесь же возникает и вторая проблема. Положение линии на рис. 16.1 определяется двумя параметрами: ее наклоном и высотой (по оси Y), и, значит, оба параметра должны быть установлены, когда оценивается взаимосвязь между способностями и успешностью решения задания. Может быть, существует лучший способ описания этой связи — способ, который не допустит, чтобы вероятность оказалась меньше 0 или больше 1 и который основывается на одном параметре. Ради упрощения предположим, что мы имеем дело с тестом свободного ответа, в котором респондентов просят дать один конкретный ответ (например: «Какой город является столицей Эквадора?») вместо нескольких альтернативных ответов, из которых нужно сделать выбор (например: «столица Эквадора — (а) Кито; (б) Богота; (в) Монтевидео»). При этом условии представляется разумным сделать следующие допущения.
• Вероятность того, что некто, имеющий крайне низкий уровень способностей, правильно ответит на тестовые задания умеренной сложности, должна быть достаточно близкой к
О, и тогда кривая должна пройти через точку А на рис. 16.1.
• Вероятность того, что некто, имеющий крайне высокий уровень способностей, правильно ответит на задания умеренной сложности, должна быть достаточно близка к 1,0, так что кривая должна пройти через точку В на рис. 16.1.
• Точка на кривой, в которой респондент имеет 50% вероятности правильно ответить на задания, может быть идентифицирована (как точка С на рис. 16.1). Эта точка соответствует уровню трудности задания.
• По обе стороны от этой точки существует диапазон способностей, где вероятность правильно ответить на задание равномерно распределяется от 0 до 1,0.
• Пока будем считать, что этот разброс способностей одинаков для каждого задания.
При наличии этих ограничений, в известной степени обусловленных здравым смыслом, я предполагаю, что форма кривой, связывающей способности с успешностью решения заданий, могла бы выглядеть приблизительно так, как это показано на рис. 16.2. Этот рисунок представляет "вероятность правильных ответов на задание для индивидуумов с различным уровнем способностей. Уровень трудности этого задания составляет 1,0, что соответствует точке на оси X, в которой индивидуум имеет 50% вероятности ответить на задание правильно. Графики такого типа известны как характеристические кривые задания (ХКЗ) (item characteristic curves (ICCs)) — это очень важный термин.
Вы могли заметить, что шкала способностей имеет как положительные, так и отрицательные значения. Не беспокойтесь об этом.
Можно видеть, что шансы правильно ответить на это задание у человека, уровень способностей которого ниже —1,5, весьма незначительны, а при уровне способностей выше 3,5 подавляющее большинство людей ответят на это задание правильно. Разные задания теста обычно будут иметь различные уровни трудности, и их можно удобно представить на одном и том же графике, как показано на рис. 16.3, который представляет три задания с уровнями трудности 0, 2, 3.
Задание для самопроверки 16.2
Представьте себе, что некто, имеющий уровень способностей, равный 1,0, ответил на три задания, характеристические кривые которых (ХКЗ) даны на рис. 16.3. Каковы приблизительно шансы, что он смо-
Рис. 16.2. Характеристическая кривая задания, уровень трудности которого составляет 1,0.
Рис. 16.3. Три характеристических кривых заданий, уровень трудности которых составляет 0, 2, 3.
жет справиться с каждым заданием правильно? Какова была бы вероятность того, что человек, имеющий способности, равные 0, ответит на каждое из этих трех заданий правильно? Кривая для задания, уровень трудности которого равен 1,0, не дана, но можете ли вы, тем не менее, сказать, какова вероятность того, что испытуемый, имеющий уровень способностей, равный 1,0, ответит на такое задание правильно?
В примерах, обсуждавшихся выше, мы приняли допущение, что задания варьируют только в аспекте их сложности. Благодаря этому характеристические кривые заданий проходят параллельно друг другу, причем наиболее трудные задания смещены вправо по шкале способностей. Поскольку трудность задания — единственный параметр, который отличает одну ХКЗ от другой, разные ХКЗ, показанные на рис. 16.3, — примеры того, что называют «однопа-раметрической моделью».
Графики, изображенные на рис. 16.2 и 16.3, могут быть описаны довольно простым математическим уравнением, известным как «логистическая функция». Существует две главные причины для работы с логистической функцией. Во-первых, форма кривой (в отличие от линейной модели) выглядит заметно более соответствующей критериям, выделенным выше, и она гарантирует, что вероятность правильного ответа на задание никогда не сможет выйти за границы диапазона от 0 до 1,0. Во-вторых, с ней легко работать, используя математические выражения, поскольку она не требует выполнения интегрирования и подобных запутанных методов. Она начинается с 0, двигается равномерно вверх по направлению к точке, характеризующей уровень сложности задания, и затем уплощается, по мере того как приближается к вероятности 1,0.
Представим себе, что мы имеем одно задание (задание /) и хотим вычислить вероятность, с которой личность с данным уровнем способностей может решить это задание правильно. Уравнение для однопараметрической логистической функции будет иметь вид:
На самом деле оно не так страшно, как кажется на первый взгляд. Левая часть уравнения читается так: «вероятность того, что человек решит задание / правильно при условии, что он имеет
уровень способностей,' равный тЗ». В правой части уравнения е -это просто .число, приблизительное значение которого составляет 2,718; и — способности личности, а Ь. — это уровень трудности задания /'. В упражнении 16.1 вас просили, анализируя графики на рис. 16.3, установить вероятность того, что некто, имеющий способности, равные 1,0, может решить задание, трудность которого равна 2,0. Теперь мы можем вычислить это непосредственно с помощью логистической функции.
Результат согласуется с рис. 16.3. Единственное, что может создать здесь для вас некоторые проблемы, — это оценка е~''7. Это число можно вычислить с помощью калькулятора или же можно обратиться к математическим таблицам значений ех.
Важный момент, который необходимо усвоить, состоит в том, что однопараметрическая логистическая функция позволяет нам вычислить вероятность решения любого задания любым человеком при условии, что мы знаем способности этого человека и трудность задания. Трудность задания определяется положением точки на шкале способностей, которая находится на полпути вдоль ХКЗ. Поскольку в эхом случае кривые начинаются при значении, равном 0, и уплощаются при значении, равном 1, уровень трудности задания — это точка, где вероятность решения данного задания
составляет
До сих пор мы полагали, что каждое задание имеет равномерное «рассеивание» по обе стороны от уровня его трудности. На самом деле это довольно жесткое допущение. Кажется весьма вероятным, что ХКЗ могут иметь различные наклоны (или уровни «дискриминации»), как показано на рис. 16.4. Малая величина дискриминации указывает на то, что индивидуумы с широким диапазоном способностей имеют обоснованные шансы ответить на задание правильно. Большая величина дискриминации говорит о том, что ХКЗ в значительно большей степени ориентирована вертикально. (Математически искушенный читатель может, вероят-
Рис. 16.4. Характеристические-кривые трех заданий.
но, рассматривать параметр дискриминации как точку перегиба на ХКЗ.)
Задание для самопроверки 16.3
Два задания на рис. 16.4 имеют уровни трудности, равные 0. Из них одно задание имеет показатель дискриминации, равный 0,5, а второе имеет показатель дискриминации, равный 1,0. Последнее задание имеет уровень трудности, равный 1,0, и показатель дискриминации, равный 2,0. Можете ли вы установить, какая из кривых связана с каждым из заданий?
Очень легко модифицировать уравнение 16.1 в однопараметри-ческое логистическое уравнение, чтобы принять в расчет второй параметр дискриминации, который обычно обозначается как а,. Модифицированная формула выглядит так:
Рi (правильно (уравнение 16.2),
и, таким образом, вероятность того, что человек, имеющий способности (и), равные 3,0, ответит правильно на задание, имею-
щее трудность (Ц), равную 2,0, и показатель дискриминации (а), равный 0,5, будет составлять:
Pi (правильно
Не следует удивляться, узнав, что эта функция называется двух-параметрической логистической функцией, в которой два параметра определяют каждое задание — показатели дискриминации (аi) и трудности (bi).
Окончательный вариант логистической модели очень полезен в тех случаях, когда испытуемым предъявляется тест множественного выбора. Представьте себе, что испытуемых попросили выбрать правильный ответ из четырех возможных. Ясно, что испытуе-|мый, имеющий очень низкий уровень способностей, угадает правильный ответ (при условии, что четыре альтернативы равно привлекательны) с вероятностью приблизительно 25%, и, таким образом, уровень ХКЗ не должен иметь вероятность, равную 0, а должен находиться на уровне, в большей степени соответствующем указанному выше. Проблема состоит в том, что мы не можем принять утверждение, согласно которому эта величина будет точно равна 0,25, поскольку на практике различные (неправильные) альтернативы не будут обладать абсолютно равной привлекательностью для тех, кто проходит тестирование. Поэтому более предпочтительным будет использование фиксированной величины типа 1/п (где п — число предлагаемых альтернатив), с ее помощью можно точнее установить для каждого задания лучшее положение точек перегиба. «Трехпараметрическая логистическая модель» позволяет нам, таким образом, принимать в расчет вероятность угадывания. Ее вид таков:
где, как и прежде, а. представляет показатель дискриминации задания, bt — его трудность, а с;. представляет вероятность, с которой респондент, имеющий очень низкий уровень способностей, ответит на это задание правильно. На рис. 16.5 показаны три ХКЗ: одна с величинами д. = 1,0; Ъ. = 0,5 и с. = 0,2, другая с величинами
Рис. 16.5, Три характеристических кривых заданий для трехпараметри-ческой модели.
а.i ~ 0,5; bi — 1,0 и ct — 0,25 и третья — с величинами at = 2,0; bt = 0 к с, «0,125.
Вы можете видеть, как каждая кривая растягивается с левой стороны до значения с., которое, разумеется, допускает вероятность «везения в угадывании». Вам следует с осторожностью устанавливать уровень трудности заданий при работе с трехпарамет-рической моделью, поскольку в этой модели начало ХКЗ не совпадает с вероятностью, равной 0. Если кривая начинается на уровне 0,3 и уплощается при значении, равном 1,0, уровень трудности задания обозначается точкой, в которой вероятность реше-
1,0-0,3 ния задания 0,3 + ——— = 0,65.
Вы могли заметить, что каждая из формул, приведенных выше, представляет небольшое усовершенствование предшествующей. Так, если мы приравняем с. к 0 в уравнении 16.3, то получим уравнение 16.2. Если мы также примем показатель дискриминации задания я, равным 1,0, тогда мы получим уравнение 16.1.
В этом разделе были введены три математические модели, которые, как можно обоснованно ожидать, описывают связи между способностями человека и его вероятной успешностью при решении отдельных заданий теста. Двухпараметрическая модель, воз-
можно, является наиболее подходящей для данных, полученных в тестах свободных ответов, в то время как трехпараметрическая модель может быть полезна в случаях, когда предъявляются тесты множественного выбора. Мы показали, что довольно просто установить вероятность правильного ответа на любое задание при условии, что известны параметры задания и способности человека. Основная цель теории сложности заданий состоит в том, чтобы реализовать эту логику в обратном порядке. Получив ответы индивидуумов на задания теста, теория заданий пытается установить наиболее вероятные значения:
• одного, двух или трех параметров, связанных с каждым заданием, и
• способностей каждого человека.
Определение способностей и параметров задания
Как упоминалось выше, основная цель теории сложности заданий — установить уровень трудности каждого задания в тесте и (одновременно) оценить способности каждого человека, проходящего тестирование. Таким образом, если тест состоит из 20 заданий и анализируются ответы 100 детей, нам необходимо установить 20 показателей трудности заданий, 100 показателей способностей по однопараметрической модели плюс 20 показателей дискриминации, если мы применяем двухпараметрическую модель, и дальше плюс 20 индексов угадывания, если мы выбираем трехпараметри-ческую модель. Каким образом мы должны все это выполнить?
Одна возможность заключается в том, чтобы просто взглянуть на данные. В табл. 16.1 представлены ответы восьми испытуемых на пять заданий теста. «Правильный» ответ обозначается 1, а неправильный — 0.
Упражнение
Потратьте около 5 минут, рассматривая данные в табл. 16.1. Постарайтесь выделить самое трудное и самое легкое задания, а также наиболее способного и наименее способного из испытуемых.
Таблица 16.1 Оценки восьми испытуемых по пяти заданиям теста
|
Задание 1
|
Задание 2
|
Задание 3
|
Задание 4
|
Задание 5
|
Джеймс
|
1
|
0
|
1
|
1
|
0
|
Шэрон
|
1
|
1
|
1
|
1
|
0
|
Брайан
|
1
|
1
|
Л
|
0
|
1
|
Линда
|
0
|
1
|
0
|
0
|
0
|
Майкл
|
0
|
1
|
1
|
0
|
0
|
Сьюзен
|
0
|
0
|
1
|
0
|
0
|
Уильям
|
1
|
0
|
0
|
0
|
0
|
Фиона
|
1
|
1
|
1
|
0
|
0
|
Кажется вероятным, что если мы игнорируем уровни трудности отдельных заданий, то Шэрон и Брайан (с четырьмя правильно решенными заданиями) имеют более высокие оценки по обсуждаемому признаку по сравнению с другими, а Уильям, Линда и Сьюзен имеют низший балл (по одному правильному ответу). Теперь рассмотрим колонки. Какие задания кажутся наиболее трудными? Только один человек (Брайан) ответил правильно на задание 5 и только двое (Джеймс и Шэрон) ответили правильно на задание 4, поэтому логично предположить, что эти два задания — наиболее трудные, а задание 3 (которое только два человека не смогли решить правильно) — легкое.
Теперь рассмотрим способности людей, принимавших участие в решении теста. Оба — и Шэрон, и Брайан — имеют общую оценку 4, и, согласно классической теории тестов, следует считать, что они имеют равные способности. Однако вы можете видеть в табл. 16.1, что это допущение излишне упрощает ситуацию, поскольку мы утверждали раньше, что задание 5 несколько сложнее, чем задание 4. Брайан, таким образом, справился с ответом на более сложное задание правильно, но не смог решить более простое. Шэрон ответила на более легкий тест правильно, но не смогла решить более сложный. Поэтому кажется оправданным считать, что Брайан должен иметь более высокую оценку по этой черте, чем Шэрон.
Упражнение
Сравните оценки, полученные Джеймсом и Фионой. Как вы думаете, кто'из них более способный и почему?
Критический пункт, который необходимо иметь в виду в этом случае, состоит в том, что, когда мы оцениваем уровень трудности заданий, мы пытаемся учитывать способности респондентов, и наоборот. Приблизительным и неформализованным способом мы пытаемся установить (разумеется, разобравшись в сути дела) -будет ли оценка способностей человека независимой от уровня трудности заданий теста, которые предъявлялись. Подобным образом мы пытаемся установить трудность каждого задания, принимая в расчет различия в способностях респондентов.
Принципиально важно помнить следующее положение: теория сложности заданий ставит целью измерять способности независимо от трудности конкретных заданий, которые предъявлялись. Она также стремится установить параметры задания — трудность/ дискриминацию/угадывание — способом, который совершенно не зависит от особенностей выборки индивидуумов, которым пришлось проходить тестирование. Это значительно контрастирует с классической теорией тестирования, в которой оценка человека рассматривается как показатель его способностей, и это полностью смешивается с различиями в трудности заданий теста. Один и тот же показатель может быть получен высокоспособным студентом, которому предъявлялись трудные задания теста, или студентом с низким уровнем способностей, которому предъявлялись легкие задания.
Выше я доказывал, что характеристическая кривая задания (ХКЗ) показывает вероятность выполнения определенного задания теста индивидуумами с различными уровнями способностей. По-видимому, можно написать компьютерную программу, которая проводила бы грубую прикидочную оценку способностей различных людей (возможно, на основе количества правильно выполненных заданий) и затем, зная эти способности, устанавливала бы уровни трудности каждого задания. Тот же процесс можно было бы в последующем повторить в обратном порядке, когда способности студентов устанавливаются на основе статистических данных о трудности заданий. Этот процесс можно было бы повторять раз за разом, добиваясь лучших оценок способностей и параметров задания на каждой стадии до тех пор, пока оценки спо-
Поделитесь с Вашими друзьями: |