Решение задач в курсе физике раздела «Динамика»


Методика решения задач динамики с помощью законов сохранения



Скачать 455.44 Kb.
страница3/7
Дата10.02.2019
Размер455.44 Kb.
ТипРешение
1   2   3   4   5   6   7
Методика решения задач динамики с помощью законов сохранения

Применение законов сохранения энергии и импульса часто позволяет получать решение наиболее простым и изящным образом, избавляя от громоздких и утомительных расчетов. И совершенно необходимым оказывается их применение, когда законы взаимодействия тел неизвестны или описание поведения механической системы с помощью уравнений движения приводит к столь сложным соотношениям, что получить окончательное решение практически невозможно. Вместе с тем законы сохранения никогда не дают и не могут дать однозначного ответа на вопрос о том, что происходит. Но если, исходя из каких-либо других соображений, можно указать, что именно должно произойти , то законы сохранения дают ответ на вопрос, как это произойдет.

Закон изменения импульса: приращение импульса механической системы относительно инерциального наблюдателя за некоторый промежуток времени равно импульсу внешних сил, действовавших на тела системы, за тот же промежуток времени. Следовательно, если импульс внешних сил, действовавших на тела системы, за рассматриваемый промежуток времени равен нулю, то импульс системы в конечный момент указанного промежутка времени будет равен импульсу системы в начальный момент. Такая формулировка является и достаточной и необходимой. Однако в таком виде закон сохранения импульса обычно не формулируют, так как проверить выполнимость указанного условия при неизвестном характере сил взаимодействия тел системы с внешними телами невозможно, а при известном задачу проще решить, не используя закон сохранения. Вместе с тем очевидно, что если сумма внешних сил, действующих на тела системы, в любой момент времени равна нулю (такую систему называют замкнутой), то импульс системы будет оставаться постоянным относительно любого инерциального наблюдателя в течение этого промежутка. Учитывая векторный характер фигурирующих в законе величин, можно утверждать, что при равенстве нулю суммы проекций внешних сил на некоторое направление в течение определенного времени проекция импульса системы на это направление будет оставаться неизменной при любых процессах в этой системе в указанный промежуток времени. Более того, если требуется определить изменение характера движения частей системы (а не системы в целом!) и известно, что силы взаимодействия этих частей во много раз превышают внешние силы, действующие на них, можно пренебречь действием внешних сил, то есть считать систему замкнутой. Обычно такая ситуация имеет место при взрывах, выстрелах и других подобных процессах. Однако при этом необходимо убедиться, что внешние силы все время остаются достаточно малыми.

Закон изменения механической энергии: приращение механической энергии системы тел относительно инерциального наблюдателя равно сумме работы внешних сил над телами системы и работы внутренних неконсервативных сил за рассматриваемый промежуток времени. Следовательно, если система изолирована (ни на одну ее точку не действуют внешние силы), а внутренние силы консервативны , ее механическая энергия относительно инерциального наблюдателя не зависит от времени. Приведенная формулировка закона сохранения механической энергии достаточна, но не необходима. Так, если в изолированной системе наряду с консервативными действуют силы сухого трения покоя, суммарная работа сил трения в силу третьего закона Ньютона равна нулю, и механическая энергия такой системы остается неизменной. Еще раз обратим внимание, что в приведенной формулировке закона сохранения механической энергии содержится требование изолированности, а не только замкнутости рассматриваемой системы тел.

2.2 Общий алгоритм решения задач раздела «Динамика»

Алгоритмы нашли широкое применение в процессе обучения. В школьной практике известно большое количество различных алгоритмов и алгоритмических предписаний. Алгоритм выполняет функцию модели деятельности. Учебная деятельность заключается в описании наблюдаемого, в организации поиска ответа на поставленный вопрос, в объяснении наблюдаемых фактов и в исполнении намеченного плана.

В процессе решения задач используются следующие алгоритмы: общий алгоритм решения задач, алгоритм преобразования единиц величин, алгоритм для определения производных единиц физических величин алгоритм решения задач по определению механической работы, алгоритм решения задач по кинематике, алгоритм решения задач по динамике, алгоритм решения задач на закон сохранения импульса, алгоритм решения задач на уравнение теплового баланса.

Общий алгоритм решения задач



  1. Понять предложенную задачу (увидеть физическую модель).

  2. Анализ (построить математическую модель явления):

  3. Выбрать систему отсчета.

  4. Найти все силы, действующие на тело, и изобразить их на чертеже.

  5. Определить (или предположить) направление ускорения и изобразить его на чертеже.

  6. Записать уравнение второго закона Ньютона в векторной форме и перейти к скалярной записи, заменив все векторы их проекциями на оси координат.

  7. Исходя из физической природы сил, выразить силы через величины, от которых они зависят.

  8. Если в задаче требуется определить положение или скорость точки, то к полученным уравнениям динамики добавить кинематические уравнения.

  9. Полученную систему уравнений решить относительно искомой величины.

  10. Решение проверить и оценить критически.

Алгоритм преобразования единиц величин

1. Запишите в левой части равенства численное значение рассматриваемой величины с указанием наименования ее единицы, а в правой части равенства выделите наименование величины с коэффициентом "единица": 5 м/с=5×1 м/с.

2. Запишите соотношение заданной единицы величины с новыми единицами измерения: 1м =1/1000 км, 1с =1/3600 ч.

3. В левой части равенства запишите численное значение заданной величины, а в правой - соотношения через новые единицы.

4. В правой части равенства осуществите все действия с коэффициентами и наименованиями.

Алгоритм для определения производных единиц физических величин

1. Напишите формулу, выражающую связь величины, единицу которой нужно определить, с другими величинами (их единицы уже известны и являются исходными). Например, необходимо определить единицу силы в СИ. Для этого запишите определяющую формулу для величины силы:

F = ma.


2. Вместо букв, обозначающих значения величин, поставьте в формулу наименования их единиц в СИ:

[F] =1 кг1 м/с2.

3. Произведите действия с наименованиями:

[F] = 1 кг*м/с2.

4. Дайте определение единицы величины.

5. Если есть необходимость, то введите название единицы, т.е.1 кг*м/с2 = 1 ньютон.

6. Введите краткое обозначение единицы:

1 ньютон =1 Н.

Основная задача динамики материальной точки состоит в том, чтобы найти законы движения точки, зная приложенные к ней силы, или, наоборот, по известным законам движения определить силы, действующие на материальную точку.

Общие правила решения задач по динамике

Характерная особенность решения задач механики о движении материальной точки, требующих применения законов Ньютона, состоит в следующем:

Сделать схематический чертеж и указать на нем все кинематические характеристики движения, о которых говорится в задаче. При этом, если возможно, обязательно проставить вектор ускорения.



Изобразить все силы, действующие на данное тело (материальную точку), в текущий (произвольный) момент времени.
Выражение «на тело действует сила» всегда означает, что данное тело взаимодействует с другим телом, в результате чего приобретает ускорение. Следовательно, к данному телу всегда приложено столько сил, сколько имеется других тел, с которыми оно взаимодействует
Расставляя силы, приложенные к телу, необходимо все время руководствоваться третьим законом Ньютона, помня, что силы могут действовать на это тело только со стороны каких-то других тел: со стороны Земли это будет сила тяжести ,  со стороны нити — сила натяжения , со стороны поверхности — силы нормальной реакции опоры и трения .
Полезно также иметь в виду и то обстоятельство, что для тел, расположенных вблизи поверхности Земли, надо учитывать только силу тяжести и силы, возникающие в местах непосредственного соприкосновения тел.
Силы притяжения, действующие между отдельными телами, настолько малы по сравнению с силой земного притяжения, что во всех задачах, где нет специальных оговорок, ими пренебрегают.

Говоря о движении какого-либо тела, например поезда, самолета, автомобиля и т.д., то под этим подразумевают движение материальной точки.


Материальную точку нужно при этом изображать отдельно от связей, заменив их действие силами. Связями в механике называют тела (нити, опоры, подставки и т.д.), ограничивающие свободу движения рассматриваемого тела.

Расставив силы, приложенные к материальной точке, необходимо составить основное уравнение динамики:



.

Далее, пользуясь правилом параллелограмма, определяют величину равнодействующей, выразив ее через заданные силы, и подставляют выражение для модуля равнодействующей в исходное уравнение.


В большинстве случаев, и особенно когда дается три и более сил, выгоднее поступать иначе: движение частицы (на плоскости) описывать двумя скалярными уравнениями. Для этого нужно разложить все силы, приложенные к частице, по линии скорости (касательной к траектории движения — оси ОХ) и по направлению, ей перпендикулярному (нормали к траектории — оси 0Y), найти проекции Fx и Fyсоставляющих сил по этим осям и затем составить основное уравнение динамики точки в проекциях:

,
где аx и аy — ускорения точки по осям.

Положительное направление осей удобно выбирать так, чтобы оно совпадало с направлением ускорения частицы. При указанном выборе осей легко установить, какие из приложенных сил (или их составляющие) влияют на величину вектора скорости, какие — на направление.


Само собой разумеется, что, если все силы действуют по одной прямой или по двум взаимно перпендикулярным направлениям, раскладывать их не надо и можно сразу записывать уравнение динамики в проекциях.
В случае прямолинейного движения материальной точки одно из ускорений (аx или аy) обычно равно нулю.
При наличии трения силу трения, входящую в уравнение динамики, нужно сразу же представить через коэффициент трения и силу нормального давления, если известно, что тело скользит по поверхности или находится на грани скольжения.

Составив основное уравнение динамики и, если можно, упростив его (проведя возможные сокращения), необходимо еще раз прочитать задачу и определить число неизвестных в уравнении. Если число неизвестных оказывается больше числа уравнений динамики, то недостающие соотношения между величинами, фигурирующими в задаче, составляют на основании формул кинематики, законов сохранения импульса и энергии.


После того как получена полная система уравнений, можно приступать к ее решению относительно искомого неизвестного.

Выписав числовые значения заданных величин в единицах одной системы, принятой для расчета, и подставив их в окончательную формулу, прежде чем делать арифметический подсчет, нужно проверить правильность решения методом сокращения наименований. В задачах динамики, особенно там, где ответ получается в виде сложной формулы, этого правила в начальной стадии обучения желательно придерживаться  всегда,  поскольку  в этих  задачах делают много ошибок.

Задачи на динамику движения материальной точки по окружности с равномерным движением точки по окружности решают только на основании законов Ньютона и формул кинематики с тем же порядком действий, но только уравнение второго закона динамики здесь нужно записывать в форме:









ПРИЛОЖЕНИЕ А

Примеры решения типовых задач

Пример 1


Аэростат массой m250 кг начал опускаться с ускорением 0,2м/с2. Определить массу балласта, который следует сбросить, чтобы аэростат получил такое же ускорение, но направленное вверх. Ускорение свободного падения 9,8 м/с2. Сопротивлением воздуха пренебречь.
Дано:

250 кг;


0,2м/с2;

9,8 м/с2.



_______________

m ?

Рис. 2.1.

Решение: Так как аэростат опускается с ускорением , меньшим ускорения свободного падения , и по условию задачи сопротивление воздуха отсутствует, то это означает, что на него кроме силы тяжести действует подъемная сила , направленная вертикально вверх.

Действующие на аэростат силы направлены вертикально, следовательно, уравнение движения



(1)

достаточно спроецировать только на одну ось системы координат OY:



. (2)

Откуда подъемная сила . (3)

Если сбросить балласт массой , то уравнение движения можно записать в виде

, (4)

или с учетом полученного выражения для подъемной силы (3)



(5)

Следовательно, масса сброшенного балласта равна



кг.

Пример 2


Автомобиль, трогаясь с места, за время 5с равноускоренно набирает скорость 72 км/ч.

Найти минимально возможный коэффициент трения между колесами автомобиля и дорогой при таком движении.

Какой наименьший тормозной путь автомобиля, набравшего эту скорость?

Дано:


5с;

72 км/ч20 м/с;

9,8 м/с2.

_________________



? ?

Рис. 2.2


Решение: При движении автомобиля, как при разгоне, так и при торможении, на него действуют три силы: сила тяжести , сила нормальной реакции со стороны дороги и сила трения

а) При ускоренном движении автомобиля сила трения препятствует проскальзыванию ведущих колес по поверхности дороги, поэтому, она направлена в сторону движения и является силой трения покоя. Именно сила трения покоя в данном случае будет являться движущей силой. Исходя из выбранной системы координат XOY, уравнение движения имеет вид



(1)

В проекциях на оси системы координат:

ОХ: , (2)

ОY: . (3)

Выразив силу трения через силу реакции и коэффициент трения между колесами и дорогой

, (4)

из уравнения движения определим ускорение автомобиля:



. (5)

С другой стороны, так как по условию задачи автомобиль двигаясь равноускоренно за время приобрел скорость , то его ускорение равно . (6)

Из выражений (5) и (6) имеем ,41. Следовательно,

,41. (7)

б) При торможении сила трения направлена в сторону, противоположную движению и является силой трения скольжения. Уравнение движения автомобиля в этом случае в проекциях на оси координат



Рис. 2.3.

ОХ: , (8)

ОY: . (9)

Учитывая, что , ускорение автомобиля при торможении

. (10)

Путь, пройденный автомобилем, движущимся равнозамедленно с начальной скоростью равен



(11)

Время движения до остановки можно определить из условия, что конечная скорость автомобиля



следовательно, (12)

Тогда (13)

Учитывая выражения для коэффициента трения (7), получаем

м.

Пример 3


На гладкой наклонной плоскости с углом при основании лежит доска массой М, а на доске – брусок массой m. На доску действует сила, направленная вверх по склону. При какой величине этой силы, груз начнёт соскальзывать? Коэффициент трения между доской и бруском . Ускорение свободного падения .

Дано:


;

М;

m;



;

.

___________



F ?

Решение: Силы, действующие на каждое из тел, в инерциальной системе отсчета XOY указаны на Рис.2.4.



Рис. 2.4


На брусок действует сила тяжести , сила трения , сила и сила реакции ; на доску действует сила тяжести , сила реакции , сила трения и вес бруска равный по величине . Учтём, что

. (1)

Запишем второй закон Ньютона в проекциях на оси выбранной системы координат при условии, что брусок по доске не скользит:



(2)

(3)

. (4)

Решая систему уравнений (2) и (3), получим .

Используем условие (1): .

Следовательно, при брусок будет соскальзывать с доски.

Пример 4

На наклонной плоскости с углом при основании неподвижно лежит кубик. Коэффициент трения между клином и кубиком равен . Наклонная плоскость движется с ускорением в направлении, показанном на рис. 2.5. При каком минимальном значении этого ускорения кубик начнет соскальзывать?

Дано:

;

;



.

________


?

Рис. 2.5


Решение: Запишем второй закон Ньютона в проекциях на оси ОХ и ОY инерциальной системы отсчета, связанной с Землей, считая, что кубик относительно клина покоится:

(1)

(2)

Откуда


Так как кубик покоится относительно клина, то и связаны соотношением , т.е.



Откуда получим .

Следовательно, при кубик начнёт соскальзывать при ускорении клина, равном .

Если , то тело начнет соскальзывать при любом сколь угодно малом ускорении.

Пример 5.

Горизонтальная доска имеет ступеньку высотой Н, в которую упирается свободно лежащий на доске однородный цилиндр радиуса R > H. Доску двигают горизонтально с ускорением (рис. 1). Найдите максимально возможное ускорение, при котором цилиндр еще не будет подниматься на ступеньку. Трением пренебречь.





Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7


База данных защищена авторским правом ©dogmon.org 2019
обратиться к администрации

    Главная страница